Menentukan Persamaan Garis Singgung Parabola

Seperti yang sudah dibahas sebelumnya, ada tiga kemungkinan kedudukan garis terhadap suatu parabola yaitu berpotongan di dua titik, bersinggungan, dan tidak memotong maupun menyinggung. Selanjutnya, dari kedudukan bersinggungan ini ada kalanya kita diminta untuk memilih  persamaan garis singgungnya. Dalam hal ini terdapat tiga kondisi dimana kita diminta untuk memilih persamaan garis singgungnya yaitu, persamaan garis singgung yang melalui satu titik pada parabola, persamaan garis singgung dengan gradien tertentu, dan persamaan garis singgung yang melalui satu titik di luar parabola.

Persamaan Garis Singgung yang Melalui Suatu Titik Pada Parabola

Yang dimaksud dengan persamaan garis singgung yang melalui satu titik pada parabola ialah dimana kita diminta untuk memilih persamaan garis singgung parabola yang diketahui melalui satu titik pada parabola. Karena parabola dibedakan oleh letak puncaknya, maka  akan dibahas terkena persamaan garis singgung parabola dengan puncak di $O(0, 0)$ dan  persamaan garis singgung parabola dengan puncak $P(a, b)$

Untuk Parabola yang Berpuncak di $O(0, 0)$
Berikut ini ialah rumus untuk memilih persamaan garis singgung yang melalui $A(x_1, y_1)$ pada parabola yang beruncak di $O(0, 0)$
$y^2 = 4px$ ialah $yy_1 = 2p(x + x_1 )$
$y^2 = -4px$ ialah $yy_1 = -2p(x + x_1 )$
$x^2 = 4py$ ialah $xx_1 = 2p(y + y_1 )$
$x^2 = -4py$ ialah $xx_1 = -2p(y + y_1 )$

Untuk Parabola yang Berpuncak di $P(a, b)$
Apabila parabola mempunyai puncak $P(a, b)$, maka rumus untuk memilih persamaan garis singgung yang melalui titik $A(x_1, y_1)$ pada parabola adalah
$(y - b)^2 = 4p(x - a)$ ialah $(y - b)(y_1 - b) = 2p(x + x_1 - 2a)$
$(y - b)^2 = -4p(x - a)$ ialah $(y - b)(y_1 - b) = -2p(x + x_1 - 2a)$
$(x - a)^2 = 4p(y - b)$ ialah $(x - a)(x_1 - a) = 2p(y + y_1 - 2b)$
$(x - a)^2 = -4p(y - b)$ ialah $(x - a)(x_1 - a) = -2p(y + y_1 - 2b)$

Untuk lebih jelasnya perhatikan pola soal dan pembahasan memilih persamaan garis singgung yang melalui suatu titik pada parabola

misal 1
Tentukan persamaan garis singgung parabola $y^2 = -4x$ di titik $(-1, -2)$
Penyelesaian
$y^2 = -4x$ maka $p = 1$
Persamaan garis singgung parabola $y^2 = -4x$ di titik $(-1, -2)$ adalah
$yy_1 = -2p(x + x_1 )$
$y(-2) = -2(1)(x + (-2))$
$-2y = -2(x - 2)$
$y = x - 2$

misal 2
Tentukan persamaan garis singgung parabola $(x - 2)^2 = 8(y - 2)$ di titik $(6, 4)$
Penyelesaian
$(x - 2)^2 = 8(y - 2)$ maka $p = 2$
Persamaan garis singgung parabola $(x - 2)^2 = 8(y - 2)$ di titik $(6, 4)$ adalah
$(x - 2)(6 - 2) = 2(2)(y + 4 - 2(2))$
$(x - 2)(4) = 4(y + 0)$
$x - 2 = y$
$y = x - 2$

Persamaan Garis Singgung Parabola dengan Gradien Tertentu

Persamaan garis singgung yang dimaksud ialah persamaan garis singgung parabola yang sudah diketahui gradiennya. Misalkan $m$ ialah garis singgung suatu parabola, maka persamaan garis singgung parabolanya sanggup ditentukan dengan rumus

Untuk Parabola yang Berpuncak di $O(0, 0)$
$y^2 = 4px$ ialah $y= mx + \frac{p}{m}$
$y^2 = -4px$ ialah $y= mx - \frac{p}{m}$
$x^2 = 4py$ ialah $y= mx - m^2 p$
$x^2 = -4py$ ialah $y= mx + m^2 p$

Untuk Parabola yang Berpuncak di $P(a, b)$
$(y - b)^2 = 4p(x - a)$ ialah $(y - b) = m(x - a) + \frac{p}{m}$
$(y - b)^2 = -4p(x - a)$ ialah $(y - b) = m(x - a) - \frac{p}{m}$
$(x - a)^2 = 4p(y - b)$ ialah $(y - b) = m(x - a) - m^2 p$
$(x - a)^2 = -4p(y - b)$ ialah $(y - b) = m(x - a) + m^2 p$

Untuk lebih jelasnya perhatikan pola soal diberikut yang sudah disertai dengan pembahasanya

misal 3
Tentukan persamaan garis singgung parabola $y^2 = 6x$ yang mempunyai gradien $m = -2$
Penyelesaian
$y^2 = 6x$ maka $p = \frac{3}{2}$
Persamaan garis singgung parabola $y^2 = 6x$ yang mempunyai gradien $m = -2$ adalah
$y= -2x + \frac{\frac{3}{2}}{-2}$
$y= -2x - \frac{3}{4}$

Kadangkala, dalam soal nantinya kita dihadapkan pada dilema yang terkait dengan kedudukan garis terhadap garis lainnya untuk itu kita harus mengingat kembali materi gradien persamaan garis lurus. Berikut ini ialah pola soalnya

misal 4
Tentukan persamaan garis singgung parabola $x^2 - 6x - 2y + 5 = 0$ yang sejajar dengan garis $3x - 4y + 5$
Penyelesaian
Langkah pertama, ubah terlebih lampau bentuk $x^2 - 6x - 2y + 5 = 0$ menjadi bentuk bakunya
$x^2 - 6x - 2y + 5 = 0$
$x^2 - 6x + 9 = 2y - 4$
$(x - 3)^2 = 2(y - 2)$
Sehingga diperoleh nilai $p = \frac{1}{2}$
Langkah kedua, tentukan gradien $3x - 4y + 5$ yaitu $m_1 = -\frac{3}{-4} = \frac{3}{4}$.Karena garis yang dicari sejajar dengan $3x - 4y + 5$ maka berlaku $m_2 = m_1 = \frac{3}{4}$
Persamaan garis singgung parabola $x^2 - 6x - 2y + 5 = 0$ yang sejajar dengan garis $3x - 4y + 5$ adalah
$(y - b) = m(x - a) - m^2 p$
$(y - 2) = \frac{3}{4}(x - 3) - (\frac{3}{4})^2 (\frac{1}{2})$
$(y - 2) = \frac{3}{4}x - \frac{9}{4} - \frac{9}{32}$
$y = \frac{3}{4}x - \frac{72}{32} - \frac{9}{32} + 2$
$y = \frac{3}{4}x - \frac{81}{32} + \frac{64}{32}$
$y = \frac{3}{4}x - \frac{17}{32}$

misal 5
Tentukan persamaan garis singgung parabola $y^2 = -4x$ yang membentuk sudut $60^o$ dengan sumbu x
Penyelesaian
$y^2 = -4x$ maka $p = 1$
Gradien $m = tan 60^o = \sqrt{3}$
Persamaan garis singgung parabola $y^2 = -4x$ yang membentuk sudut $60^o$ dengan sumbu x adalah
$y= mx - \frac{p}{m}$
$y= \sqrt{3}x - \frac{1}{\sqrt{3}}$
$y= \sqrt{3}x - \frac{1}{3}\sqrt{3}$

Persamaan Garis Singgung Parabola yang Melalui Satu Titik di Luar Parabola

Untuk memilih persamaan garis singgung parabola yang melalui satu titik di luar parabola caranya kurang lebih sama menyerupai memilih persamaan garis singgung lingkaran yang melalui satu titik di luar lingkaran. Langkah-langkah untuk memilih persamaan garis singgung parabola yang melalui satu titik di luar parabola adalah

  1. Buat persamaan garis yang melalui $A(x_1 , y_1 )$ dengan memisalkan gradiennya m yaitu $y – y_1  = m(x – x_1 )$
  2. Substitusikan y (Persamaan garis yang didapat pada langkah pertama) ke persamaan parabola sehingga diperoleh persamaan kuadrat. Kemudian tentukan nilai diskriminan (D) persamaan kuadrat tersebut
  3. Karena garis menyinggung parabola, maka nilai $D = 0$. Dari D = 0 akan diperoleh nilai gradien $m$. Kemudian substitusikan nilai $m$ ke persamaan garis pada langkah pertama. Sehingga akan didapat persamaan garis yang dicari
Agar mempergampang dalam menuntaskan dilema atau soal-soal yang dihadapi nantinya, diperlukan juga kita sudah memahami cara memilih persamaan garis lurus. Untuk lebih jelasnya perhatikan pola soal yang sudah dilengkapi pembahasannya

misal 6
Tentukan persamaan garis singgung parabola $y^2 = -4x$ yang melalui titik $(2, 1)$
Penyelesaian
Persamaan garis yang $(-\frac{1}{4}, 1)$

$y – y_1  = m(x – x_1 )$
$y – 1  = m(x - 2)$
$y = mx - 2m + 1$
Substitusi $y = mx - 2m + 1$ ke persamaan parabola $y^2 = -4x$
$(mx - 2m + 1)^2 = -4x$
$m^2 x^2 + 4m^2 + 1 - 4m^2 x +$ $2mx - 4m  = -4x$
$m^2 x^2 + 4m^2 + 1 - 4m^2 x +$$ 2mx - 4m + 4x = 0$
$m^2 x^2  - 4m^2 x + 2mx + 4x +$$ 4m^2 - 4m + 1 = 0$
$m^2 x^2 - (4m^2 - 2m-  4)x +$$ (4m^2 - 4m + 1)= 0$
Karena garis menyinggung maka $D = 0$
$b^2 - 4ac = 0$
$(- (4m^2 - 2m -  4))^2 - $$4m^2 (4m^2 - 4m + 1) = 0$
$16m^4  + 4m^2  + 16 - 16m^3 - 32m^2 +$$ 16m  - 16m^4  + 16m^3 - 4m^2 = 0$
$-32m^2  + 16  + 16m = 0$
$32m^2  - 16m - 16 = 0$

$2m^2 - m - 1 = 0$
$(2m + 1)(m - 1) = 0$
$m = -\frac{1}{2}$ atau $m = 1$
Jadi, persamaan garis singgungnya
Untuk $m = -\frac{1}{2}$
$y = mx - 2m + 1$
$y = -\frac{1}{2}x - 2(-\frac{1}{2}) + 1$
$y = -\frac{1}{2}x + 2$
Untuk $m = 1$
$y = mx - 2m + 1$
$y = 1x - 2(1) + 1$
$y = x - 1$

Demikianlah terkena persmaan garis singgung parabola, biar sanggup dipahami dan bermanfaa.

Subscribe to receive free email updates:

0 Response to "Menentukan Persamaan Garis Singgung Parabola"

Posting Komentar